

100-lbf LO₂/CH₄ RCS Thruster Testing & Validation

Frank Barnes Embry-Riddle Aeronautical University Matthew Cannella University at Buffalo

Carlos Gomez University of Texas at El Paso Jeffrey Hand Boston University ER23 - Spacecraft & Auxiliary Propulsion Systems Branch

David Rosenberg University of Michigan Mentors: Kevin Pedersen, Jack Chapman, & Richard Sheller (JTI)

Meet The Engine

•100 pound thrust liquid Oxygen-Methane thruster sized for RCS (Reaction Control System) **Applications**

Innovative Design Characteristics

- Simple compact design with minimal part count
- Gaseous or Liquid propellant operation
- Affordable and Reusable
- Greater flexibility than existing systems
- Part of NASA'S study of "Green Propellants"

Test Stand/Thruster Preparation

- Installed new main propellant valves (Valvetech)
- Calibrated and installed new pressure transducers (Statham)
- Leak checked Actuation/Purge Systems with GN₂
- Installed stand at test site with camera coverage
- Leak checked Fuel/Oxidizer Systems with LN₂

DAQ/Instrumentation Verification

- Checked DAQ System for proper/consistent excitation and actuation
- Wiring checked for continuity and proper operation with valves, transducers, and thermocouples
- Calibrated pressure transducers both out of system and installed in system
- Thermocouple inputs checked with Thermocouple Calibrator
- Tested valves for proper actuation

Procedural Flow Chart

Thruster Schematic

SBIR Phase I Hot-Fire Test

Future Applications & Benefits

- Spacecraft/Launch Vehicle Attitude Control Systems (ACS)
- In-Situ Utilization of CH₄ on Mars for potential propellant usage
- Environmentally-Friendly exhaust products

Cold-Flow Test/Hot-Fire Simulation

- Dry run walkthrough of procedures and documentation
- Hot-fire test simulation conducted with LN₂ as replacement for LO₂ and LCH₄
- Full test simulation included:
 - Step-by-step operations according to procedures
 - Design and verification of test/safe sequences
 - Control of test stand through Labview GUI
 - Tracking of test operations and conditions
 - Interaction with test technician for safe operation of test stand

Hot-Fire Testing/Data Analysis

- Hot-fire testing will validate performance and functionality of thruster
- Thruster's dependence on mixture ratio will be assessed
- Data will be compared with previous test results to verify reliability and repeatability
- Data will be used to calculate performance parameters such as thrust and ISP

Tentative Test Matrix								
Test #	Description	Duration (s)	Injector Propellant Supply	Igniter Propellant Supply	Ox Mdot (lbm/s)	Fuel Mdot (lbm/s)	O/F	Description
1	Sparker	0.1	-	-	ı	-	-	Ensure sparker
2	Igniter Cold Flow	0.1	-	LN2	0.01000	0.00667	1.50	Cold Flow Igniter Test
3	Igniter Cold Flow	0.1	-	LN2	0.01000	0.00588	1.70	Cold Flow Igniter Test
4	Igniter Cold Flow	0.1	-	LN2	0.01000	0.00526	1.90	Cold Flow Igniter Test
5	Thruster Cold Flow	2	LN2	LN2	0.20000	0.13333	1.50	Cold Flow Injector Test
6	Thruster Cold Flow	2	LN2	LN2	0.16600	0.09790	1.70	Cold Flow Injector Test
7	Thruster Cold Flow	2	LN2	LN2	0.20000	0.10526	1.90	Cold Flow Injector Test
8	Igniter	0.1	-	Liquid	0.01000	0.00667	1.50	Cryo Propellant Supply
9	Igniter	0.1	-	Liquid	0.01000	0.00588	1.70	Cryo Propellant Supply
10	Igniter	0.1	-	Liquid	0.01000	0.00526	1.90	Cryo Propellant Supply
11	Thruster	2	Liquid	Liquid	0.20000	0.13333	1.50	Cryo Propellant Ignition Test
12	Thruster	2	Liquid	Liquid	0.16600	0.09790	1.70	Cryo Propellant Ignition Test
13	Thruster	2	Liquid	Liquid	0.20000	0.10526	1.90	Cryo Propellant Ignition Test

Tentative Test Matrix